RI. SE

Greenhouse gas reduction pathways for EU road transport

Jakob Rogstadius, Mats Alaküla, Patrik Plötz, Francisco J. Márquez-Fernández, Lina Nordin

Study Objectives

- Compare pathways to decarbonize EU road transport
- What alternatives remain to reduce GHG emissions quickly enough?

Authors

- Jakob Rogstadius, RISE
- Mats Alaküla, LTH
- Patrick Plötz, Fraunhofer ISI
- Francisco J. Márquez-Fernández, VTI
- Lina Nordin, VTI

Reference Group

- Michael Barnard, TFIE
- Volker Hasenberg, Daimler
- Ikbal Uysal, Daimler
- Matts Andersson, WSP
- Tallis Blalack, Tech-to-market advisor
- Stefan Sellschopp, e-REVOLT
- Rolf Behling, e-REVOLT
- Sergio Perez, ENRX
- Patrick Duprat, Alstom
- Kenneth Natanaelsson, Swedish Transport Administration
- Svetla Chakarova Käck, VTI
- Liridona Sopjani, RISE

3

EU 2035 GHG Reduction Targets

Scientific Advice

77-87% reduced GHG/y from EU economy, vs. 1990

Current State

CO₂/year from road traffic ~20% above 1990

Current Ambition

100% reduced tailpipe CO₂ from new light-duty vehicles

65% reduced tailpipe CO₂ from new heavy-duty vehicles, vs. 2019

Pathways Assessed

Powertrains	Energy supply	
ICEVs – internal combustion engine vehicles	Fossil fuels Biofuels Electrofuels (e-fuels, RFNBOs)	
BEVs - Battery electric vehiclesNew vehiclesRetrofits of ICEVs	Plug-in "slow" charging Plug-in "fast" charging ERS – Electric Road System	
FCEVs - Fuel-cell electric vehicles	 Green hydrogen Multiple production locations Multiple transportation methods Gaseous or liquid 	

Methodology

- 1. Levelized cost per kilometer
- 2. Levelized lifecycle greenhouse gas (GHG) emissions per kilometer
- 3. Maximum scalability by 2035
- 4. Expected change in total transport work, with "soft interventions"

Cite when possible, calculate when necessary

Road Transport Demand Reduction

- Urban interventions can have local impact
- Immature literature, cannot estimate EU impact
- Significant shift of road transport to rail and waterways is unlikely
- Price increase can reduce demand
- Electrification will reduce costs
- Still expect increasing road transport

Biofuels

- In use today (~6% of energy)
- Cost-neutral with fossil fuels at expected cost of carbon (~100-250 €/tCO₂-eq)
- Challenging to increase supply without significantly increasing cost

Hydrogen and E-fuels

- Green hydrogen is not available today
- Supply still much less than proposed uses by 2035
- Road transport competes with better uses of hydrogen – no real GHG reduction
- Expensive through all pathways, some are also polluting and energy intensive inside Europe
- Insufficient potential for cost reductions, even at scale

- **E-fuels** are well suited for long-distance transportation and use in road vehicles
- Production requires green hydrogen and sustainable carbon supply, plus new refineries
- Competes with biofuels
- Poor energy efficiency
- High cost, slow to market, insufficient long-term demand to warrant investment

Battery Electric

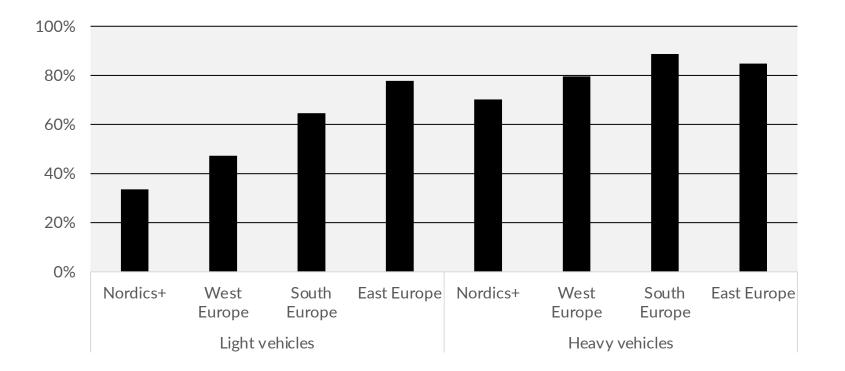
- The most scalable pathway
- Lowest cost
- Electricity supply is rapidly decarbonizing

- Embodied light-vehicle emissions must decrease, mainly from batteries
- Low uptake potential by 2035 through new sales outside light vehicles in North and Western Europe

Electric Road Systems

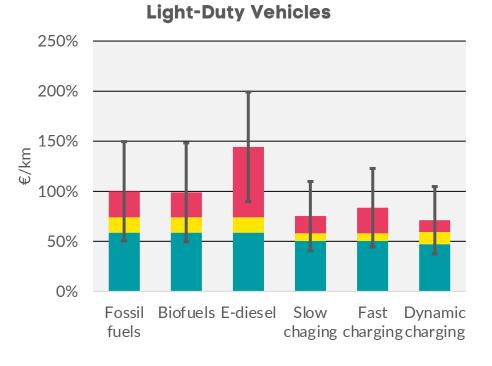
- Lowest cost charging
- ~50% smaller battery packs
 - Reduced BEV cost (heavy)
 - Reduced BEV emissions (light)
- ➔ Quicker to 100% BEV share of new vehicles
- → ICEV to BEV conversions more likely

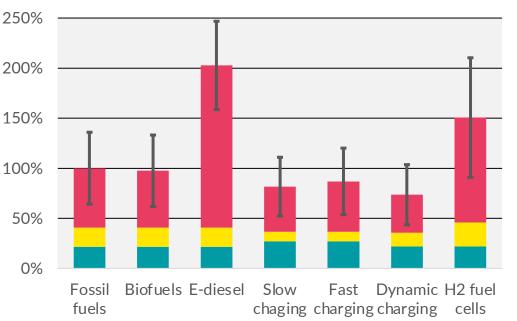
- Massive infrastructure project:
 50 000 130 000 km by 2030
- Insufficient political momentum today, not in AFIR, not promoted by vehicle OEMs
- Unclear if ERS is a realistic option for impact by 2035



Electric Retrofits

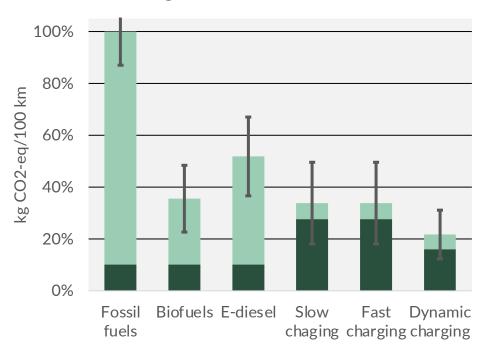
	Light-duty vehicles	Heavy-duty vehicles
Static charging	Parts: €8-17k Savings over 50% BEV lifetime: €3-6k	Parts: €100-180k Savings over 50% BEV lifetime: €40-100k
Dynamic charging (ERS)	Parts: €8-15k Savings over 50% BEV lifetime: <mark>€6-9k</mark>	Parts: €60-130k Savings over 50% BEV lifetime: €100-130k



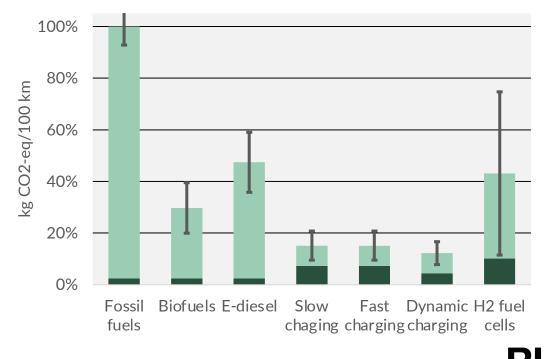

Maximum ERS-Adapted Share of the 2035 Rolling BEV Stock

Cost Savings Potential by 2035

Heavy-Duty Vehicles

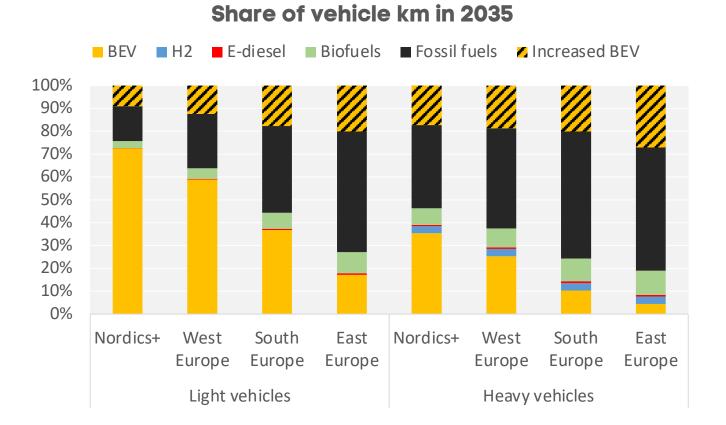

Vehicle cost Maintenance Fuel/Energy

€/km

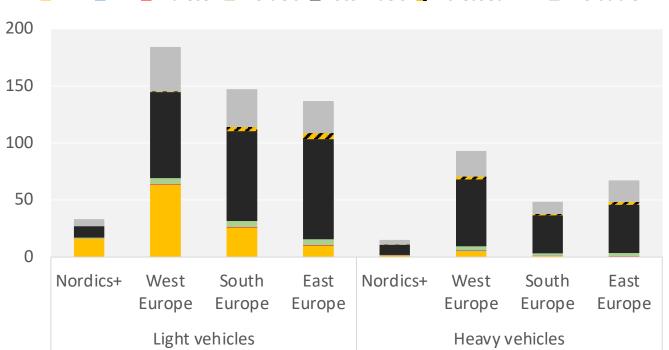


GHG intensity by 2035

Light-Duty Vehicles

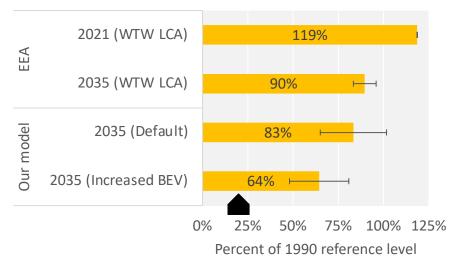


Heavy-Duty Vehicles


Combined Impact Potential by 2035

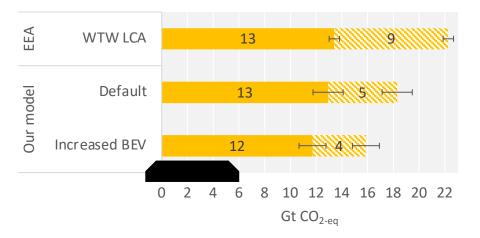
GHG Emission Sources in 2035

2035 CO_{2-eq} emissions, Mt/y



■ BEV ■ H2 ■ E-diesel ■ Biofuels ■ Fossil fuels Z Increased BEV ■ Avoidable

RI. SE


Total GHG Emissions

Annual GHG emissions from EU-27 road transport

Remaining cumulative GHG emissions from EU-27 road transport

2021-2035 82036-2050

Summary

- Expect no additional GHG reductions by 2035 from biofuels, hydrogen or e-fuels
- Expect GHG and cost reductions from direct electrification
- Light-duty batteries pose a challenge
- ERS would increase electrification, and further reduce
 BEV emissions (light-duty) and cost (heavy-duty)
- We need ICEV to BEV conversions requires ERS?

- ERS by 2030 is very challenging, due to political resistance and bureaucratic inertia
- Transport demand reduction is very difficult
- Reaching 2035 annual GHG reduction target would require 100% ERS BEV in all EU regions
- No way to stay within remaining cumulative GHG budget